

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

N.M.R. Studies of Lanthanide(III) Complexes. High Field Shifts in Complexes of 1,10-Phenanthroline

Shyama P. Sinha^a; R. D. Green^a

^a Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia

To cite this Article Sinha, Shyama P. and Green, R. D.(1971) 'N.M.R. Studies of Lanthanide(III) Complexes. High Field Shifts in Complexes of 1,10-Phenanthroline', Spectroscopy Letters, 4: 12, 399 — 402

To link to this Article: DOI: 10.1080/00387017108064673

URL: <http://dx.doi.org/10.1080/00387017108064673>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

N.M.R. STUDIES OF LANTHANIDE(III) COMPLEXES.
HIGH FIELD SHIFTS IN COMPLEXES OF 1,10-PHENANTHROLINE

KEY WORDS: NMR Shifts, Lanthanide Complexes, Phenanthroline

Shyama P. Sinha and R. D. Green

Department of Chemistry, University of Malaya,
Kuala Lumpur, Malaysia.

In continuation of our studies on the complexes of lanthanide(III) ions with N-donor ligands^{1,2}, especially those of 1,10-phenanthroline (phen)^{3,4}, we wish to report the proton N.M.R. spectra of several lanthanide(III) complexes of phen in aqueous (D_2O) solution at 330 K. Table 1 contains the observed chemical shifts of the four types of protons in phen relative to the methyl resonance of the internal standard 2-methyl-2-propanol. For comparison, the spectrum of an authentic sample of $Nd(phen)_2Cl_3 \cdot 2H_2O$ complex prepared by the method of Sinha⁵ was recorded and the spectrum found to be virtually indistinguishable from that obtained by mixing the individual components in the proper ratio.

In all four cases, the formation of a complex with lanthanide ion results in a high field shift of all the protons in phenanthroline whereas, by contrast, the protonation of the ligand results^{6,7} in a low field shift for all the protons. Except in the case of Nd(III) complex, the trend

TABLE 1

Ligand Proton Chemical Shifts for 1,10-Phenanthroline mixed with Lanthanide Chlorides in D_2O at 330 K

Hydrated lanthanide trichloride ^a	Chemical Shift, ppm below internal $(CH_3)_3COH$			
	2(9)	3(8)	4(7)	5(6)
— ^b	7.65	6.34	6.89	6.26
Ce	5.63	5.88	6.73	6.13
Pr	3.77	5.61	6.76	6.32
Nd	7.17	6.20	6.69	6.10
Nd ^c	7.24	6.24	6.80	6.19
Nd(phen) ₂ Cl ₃ ·2H ₂ O ^d	7.21	6.25	6.78	6.18
Eu	5.53	5.54	6.56	6.13

a: Ratio of M:phen = 1:2; conc.₃ of phen = 0.4 mol dm⁻³

b: Conc. of phen < 0.2 mol dm⁻³

c: 0.1 mol dm⁻³ in Nd

d: 0.1 mol dm⁻³

in proton shift at this ion:ligand ratio (1:2) is $5(6) < 4(7) < 3(8) < 2(9)$. The Nd(III) complex follows the order $3(8) < 5(6) < 4(7) < 2(9)$. The shift of the 2(9) proton is always the largest in a given complex, with Pr(III) ion producing a shift of 4 ppm.

Contrary to this finding of high field shifts in the lanthanide complexes, Rosenberger^{6,7} observed low field shifts of the 3, 4 and 5 protons and a high field shift of 1-1.5 ppm for the 2 proton in the tris-phenanthroline complexes of some d-transition metal ions: Fe(II), Co(III) and Zn(II).

The 'anomalous' high field shift of the 2 proton in the tris-complexes of the d-transition metals was attributed⁷ to a steric factor: the 2 proton, being near and perpendicular to the plane of another ligand moiety, experiences an upfield shift due to the magnetic anisotropy of another ligand. Such a shielding mechanism is probably inoperative for the lanthanide(III)-bis-phenanthroline cation possessing a different symmetry^{3,8}.

It seems more likely that a combination of contact and pseudocontact interactions of the ligand with the paramagnetic lanthanide(III) ion is responsible for the shifts reported here. A similar situation for the complexes of Pr(III) and Nd(III) with substituted pyridines has recently been reported by Birnbaum and Moeller⁹. They observed shifts of different magnitude resulting from complexation of the different trivalent lanthanides with the substituted pyridines. Their observation of a substantial change of shift upon varying the counter-ion does not affect the validity of the present results since the anion (Cl⁻) is common to all our systems.

There is, however, a dependence of shift on the relative concentrations of ion and ligand. Although the nature of this dependence is not yet well characterised, it does suggest caution about regarding the shifts herein reported as those of the bis-phenanthroline complexes; apparently the ligands are exchanging rapidly with the 'free' ligands in solution, with a population weighted time-averaged signal being observed.

REFERENCES

1. S.P. Sinha, "Complexes of the Rare Earths", Pergamon Press, Oxford, 1966.
2. S.P. Sinha, "Fluorescence Spectra of the Heterocyclic Ligand Complexes of Eu(III) with Special Reference to the Intensities and Structures of the Complexes", Section Lecture, XIIIth International Conference on Co-ordination Chemistry, Cracow-Zakopane, 1970.
3. S.P. Sinha and E. Butter, Mol. Phys., 16, 285 (1969).
4. S.P. Sinha and H.M.N.H. Irving, Anal. Chim. Acta, 52, 193 (1970),
5. S.P. Sinha, Spectrochim. Acta, 20, 879 (1964).
6. H. Rosenberger and M. Pettig, Z. Chem., 6, 30 (1966).
7. H. Rosenberger, Tagung Hochfrequenzspektroskopie, Leipzig, 1969.
8. E. Butter, Z. Anorg. Allg. Chem., 356, 294 (1968).
9. E.R. Birnbaum and T. Moeller, J. Amer. Chem. Soc., 91, 7274 (1969).